Formal ontologies vs. triple based KR gap or convergence?

Stefan Schulz Medical University of Graz

DL Ontologies (OWL-DL)

- formal axioms
- universal truths
- set semantics
- clear commitment
- Tbox-Abox partition
- instance-level rels
- "in-built"DL reasoning
- "Top down"
- "something goes"

- informal graphs
- assertions (any)
- shallow semantics
- unclear commitm.
- puns
- unrestricted rels
- Reasoning by hand crafted rules
- Bottom up"
 - "anything goes"

RDF(S) syntax (not obligatory)

restriction to binary relations

... bridging the gap?

DL **Ontologies** (OWL-DL)

- formal axioms
- universal truths
- set semantics
- clear commitment
- **Tbox-Abox partition**
- instance-level rels
- "in-built" DL reasoning
- "Top down"
- "something goes'

(RDF)

SPO-

Triples

- informal graphs
- assertions (any)
- shallow semantics
- unclear commitm.
- puns
- unrestricted rels
- Reasoning by hand crafted rules
- "Bottom up" "anything goes"
- RDF(S) syntax (not obligatory)
- restriction to binary relations

Equivalences RDF - OWL?

- English: "Trondheim is part of Norway"
 RDF: <Trondheim; part-of; Norway>
 - **OWL: Trondheim part-of Norway**
- English: "The thumb is part of the hand"
 - RDF: <Thumb; part-of; Hand>
 - OWL: Thumb subClassOf part-of some Hand
- If has-part is inverse of part-of:
 - RDF: < Norway; has-part; Trondheim >
 - **OWL: Norway has-part Trondheim**
 - RDF: <Hand; has-part; Thumb>
 - OWL: Hand subClassOf has-part some Thumb

Equivalences RDF - OWL?

English: "Aspirin treats headache"
 RDF: < Aspirin; treats; Headache>
 OWL: ???

'aspirin' and 'headache'?

- Ambiguity 1: "aspirin molecule" or "portion of aspirin"
- Ambiguity 2:
 "every aspirin treats some headache"?
 "every headache is treated by some aspirin"?
 "every aspirin has the potentiality to treat headache"?
 "the relation 'treats' obtains only between the types

Basic problem

- RDF has a very weak formal semantics. It facilitates the encoding of statements with (hidden) ambiguities.
- OWL has a strict formal semantics. It does not allow to work around ambiguities. Consequence:
 - Risk of creating wrong axioms such as:
 - * Aspirin subclassOf treats some Headache
 - Difficulty of represent the intended meaning in case of default or dispositional statements, e.g.
 - Aspirin subclassOf bearerOf some
 - (Disposition and hasRealization only
 - (TreatingProcess and hasParticipant some Headache))
 - Ontology << Knowledge Representation !!</p>

Enriching expressiveness of Triple Stores? **Description** SPO-Logics **Triples** (OWL-DL) (RDF)

Enriching expressiveness of Triple Stores? Possible strategies

- Test whether an entity is a class or an individual:
 - if S or O in an rdfs:subclassOf statement -> Class
 - if O in a rdf:type statement -> Class
 - if S in a rdf:type statement -> Individual
- Make difference between formal relations and material relations:
 - formal relations: typically "all-some" pattern, e.g. part-of
 - material relations: processes, e.g. activates, binds
- Bring quantification inside RDF predicates <S; P; O>
 If S and O are classes and P is a formal relation then:
 <S; P_{AS}; O> equivalent to S subclassOf P some O
- Inverse relations only if S and O are individuals
- If S is and individual then O is an individual (with the exception of P = {an rdfs:subclassOf; rdf:type, ...}